3D Energy Dispersive Spectroscopy – Elemental Tomography in the Scanning Transmission Electron Microscope

Brian Van Devener

The UNIVERSITY of UTAH

Topics

1.Introduction to EDS in the STEM

2.Extending EDS into three dimensions

3.Considerations and challenges for EDS tomography in the STEM

4.Examples of 3D EDS datasets

STEM Imaging: Possible Information Acquired

Figure from Williams & Carter: "Transmission Electron Microscopy"

The UNIVERSITY of UTAH

Characteristic X-Ray Generation

X-rays generated will have energies that are characteristic of atoms where they come from. Allowing identification and quantification of elemental components in a sample

i.e. $E K \alpha = BE_{L Shell} - BE_{K Shell}$

Beam-Sample Interaction Volume for X-Ray Generation

Figure from Williams & Carter: "Transmission Electron Microscopy"

The UNIVERSITY of UTAH

Dual EDS Detector System on JEOL 2800 at U of U

- Dual 100 mm² detectors
- Combined solid angle collection efficiency of 1.9 sr (best in class)
- This is still only about 13% of all signal (4 sr in a complete spherical volume of excitation)

1st SDD and 2nd SDD make the angle of 135 degrees

The UNIVERSITY of UTAH

Two Dimensional Elemental Mapping

Two Dimensional Elemental Mapping

MgH₂ nanocomposites

with Cr Samples from Zak Fang group, University of Utah

Tomographic EDS

- Tilt specimen around single axis at regular intervals (usually 1 or 2°)
- Acquire spectral image ("projection") data at each tilt angle
- Resolution of 3D spectral image is a function of
 - Maximum tilt angle (a) (+/- 80° with JEOL HTR holder)
 - Number of projections
 - S/N of projections

Figure courtesy of : K. McIlwrath JEOL USA, Inc. M. Weyland and P.A. Midgley Department of Materials Science and Metallurgy University of Cambridge

The UNIVERSITY of UTAH

Tomographic EDS

Projection

Back-projection

- Projections are combined to reconstruct 3D image
- Algorithms used for reconstruction
 - Weighted back projection with mathematical filtering of data
 - Iterative reconstruction

Example 1: Tomographic EDS New upgrade (installation completed 08/21/15)

- Spheres are 262 nm in diameter
- Blue color, C
- Gold color, Au

3D tomogram of latex spheres on Au grating

Example 2: Tomographic EDS on Core/Shell Nanoparticles

2 D EDS maps

- Tilt series performed from -64° to +59° in 3° steps
- Total of 41 tilts at 5 minute per tilt acquisition time
- Complete acquisition time of 205 minutes (3 hrs. 25min)

Example 2: Tomographic EDS on Core/Shell Nanoparticles

Green – Si Red – Fe Yellow - S

3D rendering of EDS data after tilt series

Example 2: Cross Sectional Representation

- Fe "bleed through"
- Long collection times at high magnification presents challenges
- Other challenges:

Currently no quantitative models to deal with 3D tilt series data for EDS

Inherently low S/N of EDS data in STEM

Special Thanks

Randy Polson – U of U Surface Analysis Lab

Kevin McIlwrath – JEOL USA, Inc.

Steven Kim – AppFive

